

SCRIPTING MADE SIMPLE
Programming DAZ Studio

2 of 35

SCRIPTING MADE SIMPLE
Volume 5: Input and Output Controls

End User License Agreement
(EULA)

This eBook and accompanying videos, herein referred to as the
“product”, is provided as-is with no warranties either expressed or
implied. The publisher retains all copyright ownership and reserves all
rights to this product. This product is only available directly from the
publisher or an authorized reseller. If you obtained a copy from any
other source, please visit the publisher's website to purchase a legal copy
for yourself.
* You MAY NOT copy, share or distribute copies of this product in any
form without prior written permission from the publisher. You MAY
NOT modify, change or create derivative works based upon this product
in any form or fashion or by any method. You MAY NOT sell this
product or include this product in any package or collection that is for
sell. You MAY NOT claim authorship in any form to this product.
* You MAY create, copyright and sell Daz Scripts using the techniques
contained within this product.

 __

Copyright (c) 2017, Winterbrose Arts & Graphics. All Rights Reserved.

http://www.winterbrose.com

http://www.winterbrose.com/

SCRIPTING MADE SIMPLE
Programming DAZ Studio

3 of 35

TABLE OF CONTENTS

Required Software .. 4

Preparation .. 5
Layout and Style ... 5
Script IDE Pane(tab) ... 5

Review .. 6

Namespace (Scope) ... 7
Global Namespace .. 7
Local Namespace .. 8
Global vs. Local .. 8

Behind the Scenes ... 10
Events .. 10
Input / Output .. 10

MessageBox .. 11
Buttons .. 12
Information method .. 13
Critical method.. 13
Button Pressed .. 14
Passing Strings .. 14
Question method ... 15
Warning method.. 16

Widgets ... 17
Introduction ... 17
Dialogs .. 17
DzBasicDialog .. 18
DzLabel ... 19
DzDialog ... 21
Event Handling ... 21
Property vs. Method .. 22
DzPushButton ... 22
2D Coordinates ... 25
Positioning Widgets .. 26
DzCheckBox ... 28
DzRadioButton ... 29
Grouping Widgets ... 30
Sliders ... 33

Conclusion .. 35

SCRIPTING MADE SIMPLE
Programming DAZ Studio

4 of 35

Required Software

To use DAZ Scripting, you must first install the DAZ Studio application. For the
purposes of this tutorial, we used version 4.10. The latest version is available free
from DAZ 3D using the link below.

Get DAZ Studio
{https://www.daz3d.com/get_studio}

NOTE:
The following Preparation and Review sections
are abbreviated overviews of material covered in:

SMS Volumes 1, 2, 3, and 4.

https://www.daz3d.com/get_studio

SCRIPTING MADE SIMPLE
Programming DAZ Studio

5 of 35

Preparation

Layout and Style

For this tutorial, we will use Layout "City Limits Lite" and Style "Darkside".

To change your layout, on menu select Window / Workspace / Select Layout. In
popup window, select City Limits Lite in Layout field and click Accept button.

To change your style, on menu select Window / Style / Select Style. In popup
window, select Darkside in Style field and click the Accept button.

Script IDE Pane(tab)

You will be using the built-in Script IDE pane in DAZ Studio for the scripts we
will be writing. If you do not see the Script IDE pane or tab anywhere on your
workspace, you can open it up from the main menu using Window / Panes (Tabs)
/ Script IDE.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

6 of 35

Review

Topics covered in previous volumes of the Scripting Made Simple series for DS:

Volume 1: Intro to Daz Script
Case Sensitivity, End Of Line, Scripts Folder

Commenting Your Code, Naming Conventions, Common Prefixes

Volume 2: Mathematics and Looping
Mathematical Symbols, Assignments, Strings, Operations

Fractions, Combining Strings, Incrementing and Decrementing
Combining Operation with Assignment, Precedence of Operators
Grouping with Parenthesis, Comparing Values, Blocking Code

Conditional Statements, If - Else, Switch - Case,
Looping Statements, For, While, Do - While, Parsing Errors

Volume 3: Strings, Dates and More
Whole Numbers, Positive and Negative, Integers, Real Numbers

Math, Expressions, Absolute Value, Ceiling of, Floor it,
Power of, Square Root, Round off, Random Number

Minimum of, Maximum of, “E”, Exponent, Logarithm
Strings, Character at, Trim off, Lower Case, Upper Case

Left-most/Right-most Characters, Middle Characters
Empty String, ASCII, Char to Code, Code to Char

Dates, Current Date, Universal Time, New Objects, Date to String
Year, Month, Day of Month, Day of Week, Hour, Minute

Volume 4: Arrays and Creating Functions
Customize IDE, Preferences, Current Line, Indents and Tabs

Paragraph Markers, Minimizing Actions, Debug/Output Panel, Log File
Arrays, Declaring Array, Element Naming, Determine Array

Counting Elements, Length vs. Indexing, Undefined Array, Defining Elements
Advanced Concepts, Nesting, Labels, User-Defined Functions, Basic Types
Parts of Function, Designing Functions, Function Type 1, Function Type 2

Function Type 3, Method toString, Function Type 4, Method forEach

SCRIPTING MADE SIMPLE
Programming DAZ Studio

7 of 35

Namespace (Scope)

Now is a good time to introduce the concept of namespaces (or scope of use) for
items in your script. The scope of an item is basically where it can be called or
referred to within your scripting code, and is usually determined by “where” it is
declared in your code. The two scopes that can be applied to variables and objects
are the global namespace and any local namespaces created in your code.

Global Namespace

Items in the global namespace can be used anywhere in your script. These items
are globally accessible meaning that they can be accessed and/or changed from
anywhere within your script. There is only one global namespace and that is your
whole application. Items declared at the beginning of your script can be used
anywhere, so they are considered to be in the global namespace.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

8 of 35

Local Namespace

Items declared in a local namespace such as a function can only be called or
referred to within that functions code block. The following example looks simple
enough. Even though it is not obvious, the variable sPrintThis is a local variable
for the function printsomething and cannot be used outside of that block.

Global vs. Local

Sure that all sounds good, but perhaps it still doesn’t make sense. Let’s discuss the
issue by demonstrating with variables. Remember, global variables are declared at
the beginning of your script, or outside any blocks of code, while local variables
are declared within a block of code like in the function as shown below.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

9 of 35

The concept sounds easy enough, but how can you prove that these namespace
boundaries really exist? By coding, testing, and debugging of course! Let’s look
at that code again and test to see if the variable sMyName is truly in the global
namespace by printing it inside and outside of the function’s code block.

SUCCESS! The data contained in the variable sMyName was able to be passed to
the function for printing, and it was also directly printed both inside and outside the
function’s code block meaning that it is in the global namespace. That may have
been quite obvious, so let’s try to test the variable sPrintThis and see if it
accessible outside of the function’s code block.

As you can see, we received an error for line 9 where we tried to access the
variable sPrintThis outside of the block of code for the function where it was
declared. That was because it was declared by and is local to that function.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

10 of 35

Behind the Scenes

Practically everyone today uses a graphics based operating system (OS), whether it
be Microsoft’s Windows, the Apple Mac’s OSX, or a Linux GUI like Gnome or
KDE. What most computer users do not realize is that the OS is constantly
monitoring the computer system itself along with all of the attached peripherals
like keyboard, mouse, network, and touch screen monitors (just to mention a few).

Events

So exactly how does an app know when you have clicked somewhere on the screen
with your mouse, or pressed some key on the keyboard? Well, it’s that constant
monitoring we mentioned above. When the OS detects that something has
occurred on one of the many devices that it is watching, it generates what is called
an “event”. Applications developed with most languages, including Daz Script,
can be coded to respond to certain events when they occur.

As you further your level of experience and develop your skill set, you need to
have a basic understanding of how the OS and Applications interact. When the OS
or an application is waiting for an event to occur, this is often called “listening” for
an event. When an application is executing some task because an event has
occurred, this is called “handling” the event, and the function or method that is
called is referred to as an event handler.

Input / Output

Many of the Daz Scripts that you will write can perform as designed without any
interaction from the user. However, there are times when a script either needs to
tell the user about something which is called “output”, or get more information
from the user which is called “input”. You will be able to code your input and
output needs using a variety of objects and methods available in Daz Script.

We will cover how to get input and display output in a variety of ways in the
upcoming sections on the MessageBox and Widgets. We will demonstrate how to
write your scripting code with and without the use of system events.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

11 of 35

MessageBox

The MessageBox object can be used by your scripts to interact with the user by
providing information that is important for the user to know, or to get simple
information from the user for your script to use. Because of how this object works,
it can be considered both an input and output control for your scripts. Here is the
basic formatting of the MessageBox object.

MessageBox.type(info,title,buttons)

The main components are the object name “MessageBox” followed by the method
(which in this case is the type of message). The parameters you provide are the
information to display (info), a name or title for the message window (title), and
one or more button names (buttons) as required by your scripting code. Below is
the classic “Hello World” window in the MessageBox format with all of the
components labeled.

There are four types of message boxes as shown below available for your scripting
needs which will automatically display an icon within the popup window. The
type you choose to use is completely up to your requirement.

 information critical

 question warning

SCRIPTING MADE SIMPLE
Programming DAZ Studio

12 of 35

Buttons

While each of the four types of MessageBox can have up to three (3) buttons, by
nature of their designated type each method has a required minimum number of
buttons as shown below.

 information = 1 critical = 1
 question = 2 warning = 2

Why do you think that you are not allowed to use the MessageBox object without
any buttons? Because Daz Studio would have no way of knowing the user is
finished with the popup and should return to running the script. In this example,
we demonstrate what will happen without any buttons.

It just makes sense that information and critical would only need one button to
acknowledge the message, whereas question and warning would require at least
two buttons for responses like “Yes” and “No”, or perhaps “Continue” and “Exit”.

When buttons are used for any method, Daz Script uses zero-based indexing. It is
common practice to name any variables to capture button responses accordingly.

 button0 button1 button2
 0 1 2

index

Note that even though the button text is within quotes it often begins with the
ampersand (&) sign before the character you want to be the keyboard equivalent of
clicking the button. For example, you would use “&OK” if you want the button to
display OK and use Alt-O as the keyboard shortcut.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

13 of 35

Information method

The simplest form of the MessageBox object is using the information method to
give the user an update and wait until they click an OK button to continue. This
method does not have a need to capture any of the button data because it is usually
used just for an acknowledgement of the message by the user. For instance, let’s
say that you want to notify the user that your script has finished executing.

MessageBox.information("Finished Executing Script","Task Complete","&OK")

You can use any text for MessageBox buttons that suits your liking or needs.

Critical method

The critical method also does not need to capture any data from the user, but is
used when the message is very important to what is happening in Daz Studio. For
instance, let’s say that your script is expecting the user to select something in the
Scene tab before executing the script. If your script determines that nothing is
selected, it can notify the user before exiting.

MessageBox.critical("Nothing was selected in Scene tab","Node Selection","&OK")

SCRIPTING MADE SIMPLE
Programming DAZ Studio

14 of 35

Button Pressed

Up to now, we have not captured any return values from the MessageBox methods.
If we had, the value would have always been zero (0) for the examples that we
used. This is because the buttons have assigned values based upon the zero-
indexing principle, and we only defined one button for the information and critical
methods. Please note that we could have used up to three buttons if we really
needed to. If you use more than one button, you must separate each by the comma
(,) and encapsulate the text for each in quotes.

MessageBox.information("Press Any Button You Please","All Buttons Used","&Zero","&One","&Two")

Passing Strings

You should note that when using the MessageBox object, you can pass string
variables containing text to the methods for various parts of the popup. Here is the
formatting along with a working example.

MessageBox.method(String1,String2,String3,String4,String5)

SCRIPTING MADE SIMPLE
Programming DAZ Studio

15 of 35

Question method

The question method is nice for prompting the user to answer questions with two
parts like Yes/No or True/False. Because it displays the question mark icon, the
user already knows it is asking a question. For this method, you must use at least
two buttons.

MessageBox.question("Are you at least 18 years old?","Adult Determination","&No","&Yes")

But wait! We haven’t captured any return values. And exactly how do you think
we will do that? Easy! Just assign the MessageBox object to a variable to capture
the index number of the button pressed. Of course you will need to write your
script to match the text you used for each button name.

As you can see, we received a “0” and a “1” for the two different button clicks.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

16 of 35

Warning method

Even though it is possible to use each of the methods in any way desired, the
warning method is used to get the users attention for very important issues. Two
examples are shown below; 1) you have incorporated a license agreement of some
sort into your script, an 2) your script has made changes to the scene that can be
undone.

Again, to use the button responses from the user, simply assign the MessageBox
object to a variable and use a conditional or case selection to determine what to do.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

17 of 35

Widgets

Introduction

In Daz Script, widgets are usually graphical components used to interact with the
user. These include such items as the popup window, text labels, clickable buttons,
moveable sliders, and more. The basic naming convention for widget items is to
prefix the given name with the “w” character. For instance, if we create a widget
for a cancel button, we would declare it as something like “wCancelButton”.

Dialogs

You can think of a “dialog” as a popup window to interact with the user to both
give information and receive inputs. There are two kinds of dialogs that you have
to choose from for use in your scripts; DzBasicDialog and DzDialog. The one you
choose will depend on what your use for the dialog will be. Both dialogs are
objects, so when assigned to a variable using “new” that variable will inherit
methods and properties from the object. Once declared, the dialog (popup)
remains dormant until it is executed to interact with the user using the “exec”
method. In almost every case, you will be adding more widgets to the dialog
before it is executed (more about this later).

var xxxxx = new DzBasicDialog()

var xxxxx = new DzDialog()

You can use whatever naming convention suits your project workflow; however, it
is common practice to use “wDlg” as the variable name for dialog widgets.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

18 of 35

DzBasicDialog

You will use this dialog when you need some simple interaction with the user of
your script. It comes with two default buttons and here is how it looks by default.

It looks a bit awkward, so let’s make some quick changes. You can add a title with
the “caption” method, and you can size it with the “setFixedSize” method.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

19 of 35

It’s getting better, but there still isn’t any message on it, and how do I know which
button was clicked? Let’s start with the buttons; you can capture the user’s
response by assigning the dialog object itself to a variable. The Accept button will
return “true” while the Cancel and Close buttons will return “false”.

DzLabel

As for the message to our user, we will need to add a label onto our dialog using
the DzLabel widget. When declaring input/output widgets, you must include the
name of the dialog upon which they will appear.

var xxxxx = new DzLabel(dialogname)

SCRIPTING MADE SIMPLE
Programming DAZ Studio

20 of 35

Ok, now let’s try to make our dialog something practical and needed. How about
agreeing with all the particulars of the end user license agreement? That should
work as a good real-world example.

Wow, that did not work so well; we cannot read the complete message line. It
appears that even the label has a default size. Let’s try that again, but this time
before defining it, we will resize the label just like we did the dialog.

wMyMessage.setFixedSize(190,15)

SUCCESS! That looks much better.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

21 of 35

DzDialog

The DzBasicDialog looks good, but what if I want to create my own look and feel?
The DzDialog object is like a blank slate giving you all of the room you need for
your artistic freedom when it comes to designing dialogs.

Event Handling

Connect is the function by which you define a widget as an event handler. In
actuality, when the widget is first created it will have inherited events applicable to
the type of widget it is. For instance, buttons on your dialog will be clicked on or
pressed and this is an event to the OS. Your script must connect event(s) that you
are watching for to the user-defined functions that you create to handle the event.

connect(widget,event,function)

This will all become clearer in the next section where we create our first widget
that is an event handler (a button of course, as you may have already guessed).

SCRIPTING MADE SIMPLE
Programming DAZ Studio

22 of 35

Property vs. Method

Before we continue on to our next widget, let’s quickly review how to recognize
the difference between properties and methods for objects. Those are the words
that you find following the period “.” after the object’s name. A property will have
an assignment with the equals “=” sign, while a method will have a parameters
section with the parenthesis “()” symbols. Note there may or may not be data in
the parameters section. In the example below, caption is a property whilst
setFixedSize is a method.

DzPushButton

The DzPushButton widget will be one of the most used widgets in your arsenal as
almost every popup has some sort of buttons on it. Here is the overall structure of
the command line used to declare and define your new button.

var wButton = new DzPushButton(dialog)

As always, you must first have a dialog to place the new widget on. Then you will
create the button with your desired name.

This doesn’t look very exciting, huh? But did you notice how the dialog box
resized itself to fit the widgets placed upon it? Let’s continue on to make it more
practical.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

23 of 35

Now we need to place some text on the button using the text property and size it to
fit our desires with the setFixedSize method. Lastly, the event that we will waiting
for will be the clicked() event.

SUCCESS! We clicked the push button five times and everything worked great.
Let’s add a second “wButton2” to make our dialog more interesting, but use the
same myFunction call for the second button. Do you think this is going to work?

SCRIPTING MADE SIMPLE
Programming DAZ Studio

24 of 35

Ouch! This is probably not what you were expecting. Even though we sized the
second button to be smaller, it is still covering our first button. Sure, you can click
on wButton2 and if needed click on the right edge of the wButton, but that is just
not practical. Not to mention that this isn’t a very impressive looking popup.

Before we correct this problem, we will need to cover the basic concepts of pixel
sizing and the 2D coordinate system. As you may recall, earlier on the dialog box
automatically resized itself for our first button. However, that did not work for our
two button demo. The good news is that you can force the dialog box to be
whatever size fits your needs. When you create a dialog box, it has a width and
height that are measured in dots that are called pixels. The pixels that comprise the
width of the dialog box are counted from left to right starting with zero. The pixels
that comprise the height are counted from top to bottom stating with zero. You can
use the setFixedSize method to change the size of your dialog box.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

25 of 35

2D Coordinates

Pixel locations for the width of the dialog box are called the “X” direction. Pixel
locations for the height of the dialog box are called the “Y” direction. The X and
Y directions are referred to as the axis for that direction. Pixel locations start with
zero (remember that zero-based indexing) and go either to the right or down
depending on which axis they are being counted. Together, these two pixel
positions comprise a specific location because you can pinpoint an exact spot on
the dialog box using the pixel locations in both directions. Pixel locations are
written using the X and Y coordinates separated by a comma like x,y but you will
often see them written using a set of parenthesis like (x,y). In the figure below,
you can see the coordinates for the upper-left and lower-right pixels (locations) on
the dialog box. This universal design means that there are 150,000 unique pixel
locations (500 x 300) for the dialog box popup. Here is the dialog box we resized
showing how the 500 physical pixels in width are counted from 0 through 499, and
the 300 physical pixels in height are counted from 0 through 299.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

26 of 35

Positioning Widgets

You can control the placement of your widgets on the dialog box using the 2D
coordinate system. Most widgets have both “x” and “y” properties that you can
set. The default value for both of these properties is zero (0). These two properties
together represent the x,y pixel location for the upper-left corner of the widget.
Now it makes sense why one button was covering the other button. You can
change (set) one or both properties to move the widget to any location you desire.
With that in mind, let’s try to see if we can move our second button away from the
first and add a third button for even more effect. We will make all three buttons
the same size and leave the y position at the default zero so they align at the top.
We will also have separate functions for each button click.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

27 of 35

SUCCESS! We now have a fully functional multi-button script with input from
the user in the form of button clicks and output to the user in the form of printing
which button was clicked.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

28 of 35

DzCheckBox

You will use checkboxes when you want the user to check or uncheck their
response to an inquiry you place on the widget. When using more than one
checkbox, the user can select or unselect given choices independently of each
other. The properties for the DzCheckBox include text and x,y positioning so you
can customize it to your liking. You can capture the return value, a Boolean true
or false for the state (checked or unchecked), by assigning it to a variable.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

29 of 35

DzRadioButton

Unlike the checkbox, when using DzRadioButton(s) the user can only select one of
the available options. All radio buttons defaults to false, so you should set one to
true when they are declared. If you accidentally set more than one to true, the last
one whose value is changed will be the selected one. The properties for the
DzRadioButton also include text and x,y positioning. Normally you would see
radio buttons stacked vertically, however you can position them as you prefer.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

30 of 35

Grouping Widgets

There will be times when you need to group together several widgets. This can be
done for the buttons we previously scripted, however it is more often used for
check boxes and radio buttons. For example, if you needed two different sets of
radio buttons, they will have to work independently of each other in order for your
script to function properly. There are various methods to accomplish this; however
in this section we will discuss DzVButtonGroup and DzHButtonGroup widgets.

First, you create the main dialog widget and any grouping types that you desire.
The V is for vertically arranged buttons, and the H for horizontally arranged
buttons. Create as many groups as you need for your script.

Vertical

Horizontal

You will then have to position the groups that you create on the main dialog so that
they do not overlap each other (unless that is the desired effect). You can do that
using the X and Y properties for each group.

Overlapping Groups

Please note that the images shown above include buttons
that were created in the next paragraph in order to
demonstrate the described features or effects.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

31 of 35

Lastly, you create any buttons you need designating the group widget for which
they are intended. Be sure to set at one of your buttons for each group to default as
true so it will appear enabled when your dialog appears.

Sound complicated? Don’t worry because it is simpler that it sounds. Here is how
it was all done. You can find the annotated script on the next page.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

32 of 35

Here is the dialog again along with details of how it was created.

The Perfect Dialog

When creating custom dialogs, you will have to
experiment with the size and position of each
widget to get the look and feel you desire.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

33 of 35

Sliders

Oh my gosh! If you think you like buttons, you are going to love sliders! Here is
the script for a simple slider control using DzIntSlider widget and how it looks.

Not very impressive, but it does work. The default starting value for your slider
will be zero (0), but you can change this using the value property. You will also
use this property to retrieve any value selected by the user. You can see here
where we ran the script and ended the dialog with a value of “-6” on the slider.

Ok, now let’s make it look much more appealing and usable. Just like the many
other widgets, you can set the size/position of sliders using the setFixedSize
method and x, y properties. To further define your slider, you can use the min and
max properties to set the minimum and maximum values that you want to retrieve.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

34 of 35

Lastly, what good is a slider widget if the user does not know what to use it for?
We can solve this with the label and labelVisible properties. Some widgets are a
little more advanced and therefore take a bit more coding to properly develop.
Here is our finished script for a fully functional slider widget.

SCRIPTING MADE SIMPLE
Programming DAZ Studio

35 of 35

Conclusion

We hope that you have enjoyed this tutorial and have found some inspiration to
further develop your scripting experience by using the available input and output
controls in the Daz Studio environment. Please watch our website for other
volumes in the Scripting Made Simple series. Future tutorial volumes will cover
such topics as the 3D space, controlling objects in your scene, advanced
mathematics, and more...

	Required Software
	Preparation
	Layout and Style
	Script IDE Pane(tab)

	Review
	Namespace (Scope)
	Global Namespace
	Local Namespace
	Global vs. Local

	Behind the Scenes
	Events
	Input / Output

	MessageBox
	Buttons
	Information method
	Critical method
	Button Pressed
	Passing Strings
	Question method
	Warning method

	Widgets
	Introduction
	Dialogs
	DzBasicDialog
	DzLabel
	DzDialog
	Event Handling
	Property vs. Method
	DzPushButton
	2D Coordinates
	Positioning Widgets
	DzCheckBox
	DzRadioButton
	Grouping Widgets
	Sliders

	Conclusion

