
Page | 1 v0.1.0.58

LineRender 9000

Introduction
Hello, and thanks for your well-informed and wise decision to purchase LineRender9000!

I hope you’ll find this toolset to be very useful in your 3d art endeavors. But enough chit-

chat, let’s get to it!

Product overview
LineRender 9000 is a toolset entirely inside DAZ Studio designed to support non-

photorealistic art styles. It adds the capability to generate line art from 3d scenes in a

highly automated way.

Since it is based on custom cameras (camera shaders), LineRender's line art can be

generated without changing object surfaces (materials), leaving your existing scenes

intact.

The built-in compositing allows for quickly combining your own rendering settings (using

3Delight, Nvidia Iray, or any built-in renderer of your choice) with the line art output from

LineRender 9000. It's compatible with any textures, such as Visual Style Shaders and

PwToon.

Includes:

 LINERENDER 9000 SCRIPTED 3DELIGHT RENDER SCRIPT which generates line art based on

differences in color

 Several custom shader cameras that render the scene in drastically different

ways (to provide different options for line art generation).

 LR9K AUTORENDER DAZ Script which automates rendering multiple times and

compositing the results with one click.

 LR9K COMPOSITE CAM which composites images on top of each other.

All of the components can be used independently or in conjunction with each other

and will greatly expand your non photorealistic rendering capabilities.

Installation
Theoretically DAZ Connect™ or the provided installer from DAZ 3d should have installed

the content for you correctly. Here’s where the resulting files should have landed:

1. Several 3Delight Scripted Renderer Script files should be in:

a. <DAZ Studio installation

directory>\scripts\support\djigneo\ScriptedRenderer\LineRender9000

b. <DAZ Studio installation

directory>\resources\ScriptedRenderer\LineRender9000

2. Several presets should be located in the DAZ Studio Content Library

a. My Library\Camera presets\LineRender9000\

Page | 2 v0.1.0.58

b. My Library\Scripts\LineRender9000\

If installed correctly, the LINERENDER 9000 SCRIPTED 3DELIGHT RENDER SCRIPT should display

from within DAZ Studio:

Render settings pane > Engine > Scripted 3Delight

Render script > LineRender 9000

Quick start guide
1. Open or create a scene.

2. Load one of the LR9k Settings presets from My

Library\Scripts\LineRender9000\Settings presets.

3. Select a camera of your choice in the Viewport and orient the camera so it’s

pointing at your scene.

4. Launch LR9K AUTORENDER render script from My

Library\Scripts\LineRender9000\LR9k AutoRender.

a. Select ‘Destination’ (where you would like to save your images)

b. Enter ‘File prefix’ (what you would like to name this particular scene)

5. Click 'Render!"

6. Pat yourself on the back for making wise product purchasing decisions!

Product details

LineRender 9000 render script
The LINERENDER 9000 SCRIPTED 3DELIGHT RENDER SCRIPT is a custom render script that draws

lines based on the differences in color in the output image.

This image for example:

Page | 3 v0.1.0.58

Generates line art that looks like this:

And here are the two images overlaid:

Page | 4 v0.1.0.58

This might not look like much, but when several line art images based on different scene

representations are composited together, it starts to work.

The line image is automatically generated as a separate image from the main render

and dropped into a directory of your choosing (based on Render Settings > Renderer

Files > Outline image output directory).

Note: While JPEG is a supported image format, it’s not recommended for use. The

reason is that the JPEG file format doesn’t support opacity. If an image is generated

with an alpha (opacity) channel and saved as a JPEG, 3Delight will output the

background alpha channel as black. LineRender 9000’s line output files are best when

using alpha channels, because it makes it easy to overlay the line images on top of

other images because essentially only the lines get added to the resulting image. If

JPEG is used however, that utility is gone. If one were to configure Line Color to be

black, then the line image output would be completely black (because the Line color is

black and the background is black also). So, if you insist on using JPEG, make sure the

Line Color is set to something non-black. For example, pink! Or better yet, just use PNG

(which honors alpha).

Properties

If you've never seen the Render Settings pane before, here's what it looks like.

Page | 5 v0.1.0.58

Except for the LineRender9000 properties, which you probably haven't seen until now.

Ok, fine, here's the explanation...

Property name Description

Line Color Controls the color of the output lines. Black is overrated. Maybe

try something fun like pink for your next rendering adventure!

Line Edge

Threshold

Determines how "different" adjacent colors need to be in order

for 3Delight to decide to draw a line where the colors meet.

Higher values mean that 3Delight is less likely to draw a line,

whereas lower values mean that 3Delight will be more likely to

draw lines.

For typical use, settings between 0.20 and 0.75 are

recommended.

Line Width Controls how thick the output line will be once 3Delight has

decided to draw a line.

For typical use, settings between 0.75 and 1.25 are

recommended.

Page | 6 v0.1.0.58

Note that Line Width will need adjustment based on output

image size. Larger images will likely need larger Line Width values.

Use ColorId

materials

If set to 'Yes', at render time the materials in the scene get

overridden to be a basic texture that simply displays an ambient

color (without shadows). The color of that texture is based on an

"LR9k ColorID" property which gets automatically added to the

Surfaces editor. The point of this feature is to be able to "group"

surfaces together as a single entity for line-drawing purposes.

Generally speaking, this is used to get solid outlines around figures

and objects, though the possibilities are certainly very flexible. For

more info on this subject, read more of this manual!

Use raytracing If set to 'Yes' instructs 3Delight to use the raytracing feature. This

can produce clearer-looking renders at the expense of longer

render times (sometimes). Raytracing tends to handle

intersecting objects better.

(This tells 3Delight to use the raytrace hider instead of REYES. If

you don't know what that means, then you clearly haven't read

the 3Delight documentation nearly as much as I have.)

Render lights If set to 'No', lights are automatically disabled at render time. This

is only useful when using surface materials that don't require

lights, or when using a Camera that doesn't rely on lights (but

rather surface geometry) to have something to draw.

Render shadows If set to 'No', shadows do not get rendered.

Outline image

output directory

The directory where the line image file will be saved during the

render. This file gets automatically generated, even if the "main"

render is not saved.

Outline image

name

The filename of the line art file (without extension).

Image type Specifies the type of image file (PNG, JPEG, TIFF, etc).

Use ColorId surfaces

The Use ColorId surfaces feature warrants an extended explanation.

“ColorId surfaces” serve as a way to combine or separate different materials in your

scene for line generating purposes.

Take for example this render of the Persian Beauty Outfit top:

Page | 7 v0.1.0.58

If line art is generated from this full-color render, it ends up being rather noisy, because

there are a lot of different colors going on:

Interesting output, but this isn’t always the desired effect. In cartoon style art, it would

be a little strange to have so many thick lines like this. You may also note there are parts

Page | 8 v0.1.0.58

of the top that aren’t getting outlines at all! (If you’re curious, it’s because the edges of

the top are in shadow and don’t cause much of a color difference between the black

background 3Delight sees but you don’t due to opacity.)

Leveraging the Use ColorId materials feature, a solid outline around the entirety of the

top is easily achieved, because the “main” render ends up looking like this:

So the line output looks like this:

Page | 9 v0.1.0.58

Once again, the way this feature works is that when the scene is about to render, all

surfaces get replaced (just for the duration of the render) with an ambient surface set

to the color defined in the LR9k ColorID property. In the above example, all surfaces of

the top had LR9k ColorID set to a shade of blue.

When the LineRender9000 Scripted 3Delight script is selected via Render Settings >

Engine = Scripted 3Delight, Render Script = LineRender9000, all material shaders

automatically get a new property added to them, LR9k ColorID:

This property can be found in Surfaces pane > Editor.

Setting LR9k ColorID to identical colors convinces 3Delight to draw outlines as if the

materials were one object.

Setting LR9k ColorID to contrasting colors convinces 3Delight to draw outlines as if the

materials were separate objects.

Got it? Same color, same object. Different colors, different objects. Easy. Ok, fine, here’s

an example.

So, let’s say we’d like the Persian Beauty Top’s sleeves to be separate from the torso

area of the top. This effect can be achieved by choosing a single LR9k ColorID value for

the torso areas, and a different LR9k ColorID value for the sleeves.

Page | 10 v0.1.0.58

In the Surfaces pane, select all surfaces of the PersianFullTop figure and set the LR9k

ColorID value to something (this example demonstrates using a delightful shade of

blue…ish).

Now select only the sleeve surfaces. If you’re having trouble finding them, look for ones

that say ‘Sleeve’ in the name. Or just copy this screenshot:

Page | 11 v0.1.0.58

Set the LR9k ColorID property to a different color, such as bright green. If the LR9k

ColorID property is missing, verify Render settings is set so that Engine = Scripted 3Delight

and Render Script = LineRender 9000.

A render of the scene with Use ColorId materials set to ‘Yes’ generates this “main”

render (note how the torso is blue and the sleeves are green):

Page | 12 v0.1.0.58

And this line render (note the extra lines separating the sleeves from the torso):

In summary, the Use ColorId materials feature is one of the best way to get consistent

outlines around surfaces in your scene. It can also be used as a way to generate layer

masks, if you’re into that sort of layered-image-editing thing.

Page | 13 v0.1.0.58

It is recommended to use a “regular” (non-shader) camera in conjunction with the Use

ColorId materials feature. Many of the cameras included with this product completely

ignore the surfaces in the scene, so it usually doesn’t make sense to use ColorId with

them, but feel free to experiment!

Shader cameras

Why shader cameras?

Using shader cameras is relatively clean way to get different output from the same

scene without having to modify scene properties, such as material settings. The point of

having a variety of cameras is to render the scene in different ways to get different

basis for lines to be drawn. Most of the shader cameras included simplify the output

colors so 3Delight’s outliner is less confused by all the crazy colors found in your scenes.

The descriptions of the cameras below have renders of this image:

…except they’re rendered using the described cameras, followed by the line output

from that image. Some of the cameras give better results when compositing the main

render, others when compositing lines. What you do with the images is your business!

Edge blend

No one knows how Edge blend came to be. One day there was nothing, and the next

Edge blend! Edge blend will ignore the surfaces in the scene and draw a geometric

representation of the scene in white with some shading. This camera is commonly used

as a way to get “detail” lines.

Page | 14 v0.1.0.58

Fresnel reflected v

Ignores surface materials and renders the scene geometry using a Fresnel algorithm,

outputting the reflected vector as color information, converted to greyscale. That’s a

long-winded way of saying “the camera you should use for normal-like detail lines that

looks better than a straight output of normals would”.

Toon camera

Dynamically treats object surfaces as if they have DAZ Toon shader applied. Play with

the Clamps property to configure the color segmentation, and Clamp blend to control

how much the colors bleed together. This camera is mostly used for the “main color” of

a scene, although it can certainly be used to add some additional line detail.

Page | 15 v0.1.0.58

Toon 2-tone camera

After applying “toon” effect to the scene (similar to TOON CAMERA), checks the surface

color and if darker than Color threshold, sets the surface color to the Dark color

property, otherwise to the Light color property.

Shadow opacity cam

Checks the surface to see if it’s in shadow (based on scene lighting). If the shadow

color is darker than Shadow color threshold, the surface color is changed to the

Shadow color, otherwise to alpha. This camera serves as a way to gain higher control

the shadows in the scene independently of surfaces (so for example, ambient surfaces

can be used for the main scene color and shadows can be added using output from

this camera).

Page | 16 v0.1.0.58

LR9k Composite cam
While technically the LR9K COMPOSITE CAM is a shader camera, this one deserves a

section of its own!

Essentially, this camera layers 4 images on top of each other, ignoring what’s in the

scene and where the camera is pointed. It also has options to control layer opacity, but

I’m getting ahead of myself.

The LR9k Composite cam is a special camera mainly to be used as a convenience

feature to see how images look when composited on top of each other (and be able

to save the composite as a single image without the usage of image-editing software,

such as Photoshop). Generally, it's recommended to load the camera in the scene and

let LR9K AUTORENDER control the camera completely by using the "Composite features"

of LR9K AUTORENDER, rather than attempting to use this camera directly.

The important thing to note is that the camera ignores what's in the viewport (what it's

pointing at) and only draws the images specified in its Image properties. Renders using

this camera should typically be "regular" 3Delight (not LineRender9000).

When using this camera, Render Settings pane > Pixel size (output image size) should be

set to the same aspect ratio as the input images, otherwise the images will stretch.

Artistic results are not guaranteed if this warning is not heeded.

Properties
The Properties pane for LR9K COMPOSITE CAM should look something like this:

Page | 17 v0.1.0.58

Here's what the many, many properties do:

Property Description

Layer <number> Specifies the image to draw in the render. Layer 1 is the

"bottom"-most layer, and the other layers are composited

on top.

Layer <number> opacity Specifies how transparent the layer should appear in the

composited image. If a Layer <number> image is not

specified, set the corresponding Layer <number> opacity

to 0.0 so a plain white image doesn't cover up the lower

layer images. Or don't, if you prefer to see pure white

images come out. Your choice.

LR9k AutoRender script
This script automates several renders in sequence. It has the feature of copying camera

parameters, so there's no need to manually keep the many cameras used with this

product "in sync" (that is, pointing the same direction and having the same focal length

settings, etc) with one another. The script will align all cameras with the camera

selected when the script is launched.

Note: All cameras used will need to be parented to the same thing. Parenting cameras

to different points of origin (nodes in the scene) will cause unexpected behavior,

because even though the camera parameters are identical, they could be pointing

different directions if they have different points of origin. You could get very "artistic"

results if you do this, but no guarantees...

Page | 18 v0.1.0.58

Terminology

Think of a Render pass as a collection of settings that get applied to the scene before

Render Settings > Render is pressed. Every Render pass that is “enabled” will cause

another render to occur when the Render! button is pressed.

A Composite pass is a way to configure what images are combined together to make

an output image. It is possible to configure multiple Composite passes to try multiple

image combinations based on the same series of renders.

General properties

Destination is where the image files get dropped.

File Prefix is how the files get named: <File Prefix>_<Render pass

number>_<Camera>[_<frame number>][_lines].<File extension>

Render pass buttons

Add adds a new Render pass to the Render passes list. A Render pass represents

pressing the ‘Render’ button manually, except in this case LR9k AutoRender does it for

you.

Remove removes the selected (highlighted) Render pass from the list (permanently). If

there aren’t Render passes in the list or they’re not highlighted don’t expect this button

to do anything.

Move up will change the Order of the selected Render pass to be a lower number, and

thus get rendered earlier. It mostly doesn’t make a big difference which renders are

done first, but maybe have the quicker renders first.

Move down will change the Order of the selected Render pass to be a higher number.

If this button is pressed when the last-most Render pass is selected, nothing will happen.

Render pass properties

Enabled means the row will trigger a render pass. Setting Enabled to 'No' means "keep

this setting, but don't render it right now".

Camera allows you to select a camera in your scene. If there’s nothing in this combo

box, make sure there are cameras in your scene. Primarily, this property means the

camera shader that will take effect during the render pass. The active camera is

indeed switched for each render pass, but the script will automatically align the

cameras to match the Viewport camera, so the orientation of the Camera specified in

the property is completely disregarded. (And we want that, because keeping all the

cameras pointing the same direction and having the same focus is rather tedious. Trust

me, I’ve tried it.)

Renderer is what Rendering engine to use. This is populated with all available Rendering

engines based on what DAZ Studio has available for selection in Render settings >

Engine. In addition, all Scripted 3Delight render scripts get their own option (the most

important being LineRender9000, of course).

Page | 19 v0.1.0.58

LineRender9000 render properties section contains properties which specifically get

passed to the LineRender9000 script. These are only visible when Renderer is set to

'Scripted 3Delight > LineRender9000'

Composite pass buttons

Add will add another Composite pass to the list.

Remove will remove the selected Composite pass from the list. Note that the ‘header’

of the Composite pass (the one that has Order set to a number) must be selected for

this button to function.

Composite pass properties

Enabled controls if the Composite pass will trigger a render when ‘Render!’ is pressed.

Setting Enabled to No is a way to keep the settings without taking the time to render the

composite image.

Camera is which LR9k Composite cam to use for the Composite pass. Largely doesn’t

matter unless you’re doing fancy stuff with pre-existing images.

Composite pass layer properties

Image source allows the selection of Render pass, Image file, Keep existing image, and

None.

Render pass means the output of one of the configured render passes will be the

image used for this layer.

Image file allows specification of a pre-existing image to use as one of the

Composite pass layers. Could be used, for example to specify a background, or

a render you’ve already completed.

Keep existing image will leave the LR9k Composite cam’s Image <number>

property intact, which is really just another way to specify a pre-existing image.

None will cause the layer to be unused and the Opacity to be 0% (completely

invisible).

Render pass allows selection of one of the Render passes configured in the Render

passes section of the dialog. The number corresponds to the Order of the Render pass.

Output type allows selection of Main render and Lines. This only applies to Render

passes which use Scripted 3Delight > LineRender9000 as the Renderer. To have the Line

output be used, set this to Lines.

Image file allows selection of a pre-existing image to use. Only applies when Image

source is set to Image file.

Image tint allows adding a tint to the Image file (similar to an Image map property such

as ‘Diffuse color’ on the Surfaces pane). Only applies when Image source is set to

Image file.

Page | 20 v0.1.0.58

Layer Opacity specifies how transparent the image layer is when composited. A value

of 1.0 is completely visible, whereas a value of 0.0 is completely invisible.

The buttons!

Render! button triggers a series of renders which all get saved directly to file in the

directory specified in Destination, using the Render settings specified in Render pass

settings. This changes your workflow to: “schedule” several render passes (by setting

Enabled to ‘Yes’), click Render! once, then walk away and make a sandwich.

Saving settings

When Render! or Save settings is pressed, a null node is created in the scene titled LR9K

AUTORENDER SETTINGS. A hidden property coincidentally titled Settings stores the settings

used by LR9K AUTORENDER. Deleting this node will delete the saved settings.

Settings may be saved and loaded by saving this node as a scene subset (DAZ Studio

menu > File > Save as > Scene subset, select only the LR9K AUTORENDER SETTINGS node)

and loading into other scenes (by loading the DUF file created via Save as > Scene

subset). The Tutorials > Creating your own LR9k presets section in this document has a

step-by-step explanation of this process.

Another thing to note is that the Render pass settings are saved based on the Camera

labels (the user-friendly name that you can change), so if a camera is renamed, the

settings for passes using that Camera will be deleted after the next time LR9k

AutoRender is executed.

If multiple settings nodes are in the scene, LR9K AUTORENDER will honor the primary

selected node (the one highlighted in the Scene tab) when the script is launched. If a

node is not selected, an arbitrary settings node will be used.

If a settings node is not present when LR9K AUTORENDER is launched, one will be created

for you.

If you're curious, technical, or just like to break things, you may view the saved settings

using the following steps:

1. Select the LR9K AUTORENDER SETTINGS node

2. Navigate to the Properties pane

3. Enable the display of hidden properties via Property pane menu > Show hidden

properties

4. Locate Settings property, click the '...' button to screw with only look at the saved

settings information.

Interaction with Render Settings

Generally, the settings in the Render Settings pane are honored, with a few exceptions:

 Render Settings pane > General > Render Target is treated as ‘Direct to file’

regardless of how it’s set.

Page | 21 v0.1.0.58

 Render Settings pane > Pixel Samples X and Pixel Samples Y for LineRender9000

are based on the Render pass settings in LR9K AUTORENDER.

 Render Settings pane > General > Image name, including file type (extension), is

controlled by the LR9K AUTORENDER general settings. If using LineRender9000, the

line image property settings are also subject to the dominance of the cruel

master, LR9K AUTORENDER.

Configuring Image series renders

An Image series render will take effect when Render Settings pane > General > Render

Type is set to 'Image series'. Other settings are treated as ‘Still Image (Current Frame)’.

Tips

Getting better line output
Generally speaking, getting great results from LineRender9000 comes about from the

composition of several different LineRender9000 renders composited on top of each

other.

Mostly, a single line output image isn't fantastic in and of itself. Rather, the combination

of several "incomplete"-looking line images on top of each other start to create a

convincing line work for an image. Theoretically, it would be possible to emulate a

rather detailed line-art style by compositing a large number of line output images on

top of each other with varying shader parameters and opacities.

That being said, here are some tips to get better line output from individual renders:

1. Use a shader camera instead of a full-color camera. The shader cameras simplify

the output colors so there's less "noise" in the output line image. This is why the

cameras that come with this product are generally black and white. It reduces

the “noise” multiple colors cause.

2. Play with the 'Pixel samples' render properties. Try turning them up to 8-24 when

Use raytracing is set to ‘No’. Use raytracing will give higher quality results at lower

Pixel samples, and a range of 6-10 is recommended for that setting.

3. Use the ‘Visible’ property on nodes to isolate objects / groups of objects in the

scene to get outlines only on them.

4. Learn to use the ‘Use ColorId materials’ feature. It’s good, for reals. It’s the best

way to get consistent, clean outlines around objects.

Developing a convincing cartoon style
1. Generally, I’ve achieved better-looking results by using solid colors. Consider

changing the surfaces in the scene to have less detail.

2. Consider using geometry shells with opacity maps to act as layers. This technique

allows modifying the surface colors from within DAZ Studio™ (instead of creating

a custom texture that has the desired colors. Doing it that way means every

color tweak is an image edit rather than a property edit).

Page | 22 v0.1.0.58

Tutorials

Creating your own LR9k presets
If you’ve stumbled upon some LR9k settings that you like, you can create your own

preset for easy loading into future scenes.

1. File > Save as > Scene subset

2. Choose a filename and location for the preset

3. Select the LR9k settings node as well as the cameras used for the Render passes.

Then you can load the preset into different scenes! It’s actually pretty cool.

Creating custom actions for scripts
If LR9K AUTORENDER becomes a commonplace part of your workflow, consider creating

a custom action for the script so it's more readily accessible without having to navigate

through your Content Library.

Navigate to the LRAutoRender script in your Content Library. Right-click > Create

Custom Action

This creates a menu item in the 'Scripts' menu of DAZ Studio.

To relabel the menu item:

Window menu > Workspace > Customize

In the 'Actions' pane > Custom, find LRAutoRender

Page | 23 v0.1.0.58

Right click > Edit Custom Action...

Page | 24 v0.1.0.58

Modify 'Menu Text' to be the text you want.

You can also add this script to a tool bar from the 'Tool Bars' tab within the 'Customize

DAZ Studio' form.

For example, a button could be created within 'Viewport tools' near the other Render

icons.

Technical notes
The LINERENDER 9000 SCRIPTED 3DELIGHT RENDERER SCRIPT works by using the “outliner” feature

built-in to the 3Delight rendering engine. This is the same feature used by the "standard-

issue" Outline render script, as well as ToonyCam Pro. The big difference is that

LineRender9000 supports Shader cameras and supports passing the Line color and

ColorId properties to the 3Delight engine properly.

Comparison to ToonyCam Pro

Since some people have a frame of reference from using ToonyCam Pro, in this section

I will attempt to discuss the similarities and differences between the products.

Similar to LineRender9000, ToonyCam Pro is several distinct components that work

together to come up with a cartoon style representation of a 3D scene.

Page | 25 v0.1.0.58

ToonyCam Pro

 Outline Compositor Scripted 3Delight render script

 ToonyCam Pro composite camera

ToonyCam Pro's Scripted renderer script does two things of note:

 Automates two renders back to back

 Feeds the line outputs of the first render to the Composite camera

ToonyCam Pro's Composite camera does two things of note:

 Renders the image with baked-in toon shading

 Composites 3 images on top of the toon-shaded image: ColorId, Normal, and

Depth outline images.

ToonyCam Pro is able to achieve "1-click" results because of the way the Line output

was configured and generated. Similar to the Outline example script, ToonyCam's

render script asks 3Delight to generate lines based on 3 different render-time variables:

Color, Normals, and Depth. This style of composition and line generation is non-

configurable, other than specifying Line Thickness and Threshold.

LineRender9000

 Scripted 3Delight render script

 LR9K Composite camera

 Various other shader cameras

 LR9k AutoRender script

LineRender900's 3Delight render script enables line output similar to ToonyCam Pro and

the Standard Outline render script. The difference is that LineRender9000 generates only

one line-output file: Color. The usage of ColorId materials was parameterized as a

Render option, and support for Shader cameras had to be added in order to use the

shader cameras that transform scene variables into colors.

Instead of using one render pass with a pre-configured ColorId, Normals, Depth

approach, LineRender9000 is based on several render passes using different shader

cameras so that the line output is more configurable. The approach of using multiple

cameras has several advantages and disadvantages. The advantages are that line

output is predictable and flexible. These are important advantages, because when

rendering with the other line-generating scripts, it is very difficult to predict where lines

will be drawn, since there is no visual representation of the Normals or Depth variables.

Similarly, the ColorId surface override happens at render time so it's difficult to ensure

that it is configured correctly. Having all line output based on color means that for every

line image, there's a corresponding "main render" image that points to where the

differences in color are, and thus why lines were drawn where they were. The decision

to have Line output to be solely based on color allows for a great deal of flexibility,

since any number of Camera shaders and Material shaders can be used to generate

Page | 26 v0.1.0.58

such variances of color. To a large degree, the line output one can get from

LineRender9000 is limited only by one's creativity with using and creating shaders.

The disadvantages of using multiple cameras is that in order to have the outputs of all

cameras line up so that a composition looks good, the cameras need to have the

same properties. (e.g. they need to point the same way and have the same focal

length.) It also means that a render needs to be triggered per camera. These concerns

were largely addressed by the creation of the LR9K AUTORENDER script.

The LR9K AUTORENDER script does primarily 3 things:

 Automates a series of renders, allowing specification of Camera and some

Render properties.

 Copies camera properties to match with the camera used when the script is

launched.

 Optionally allows for configuring how the results of the renders get composited.

Comparing to ToonyCam Pro again, ToonyCam Pro requires that the main render is

always 3Delight using a Toon camera and always generates ColorId, Normal, and

Depth lines. In contrast, LineRender9000 allows for specifying any 4 output image files of

the user's choice (using any renderer) to be used for any of the 4 layers of the

composite image. LineRender9000 has to render 4 times to get the same number of

layers ToonyCam Pro does in 2 render passes, but the results are a lot more

configurable.

To get similar results to a ToonyCam Pro image, one might configure LR9K AUTORENDER as

follows:

1. Toon camera : 3Delight

2. Regular camera : LineRender9000 using ColorId materials

3. Normal camera: LineRender9000

4. Depth camera: LineRender9000

All composited on top of each other using 100% opacity.

(Normal and Depth cameras were not included as stock LineRender9000 cameras,

since I didn't like their output style. If you’re into blocky-looking geometric renders,

maybe a Normal camera is for you. Seriously though, I suggest using Fresnel reflected v

in place of Normals, and literally anything in place of Depth.)

Raytracing in 3Delight
Raytracing is the default Render mode of the latest versions of 3Delight. In general, it

tends to produce “sharper” shading output (as well as handle object collisions better)

and has been noted to have a positive effect on the outliner (which is used to draw the

line output for LineRender9000).

For additional information on the subject, please reference the 3Delight wiki.

https://3delight.atlassian.net/wiki/display/3DFM/Pros+and+Cons+of+Path+Tracing+vs+REYES

